13 research outputs found

    Sex-specific mortality forecasting for UK countries: a coherent approach

    Get PDF
    This paper introduces a gender specific model for the joint mortality projection of three countries (England and Wales combined, Scotland, and Northern Ireland) of the United Kingdom. The model, called 2-tier Augmented Common Factor model, extends the classical Lee and Carter [26] and Li and Lee [32] models, with a common time factor for the whole UK population, a sex specific period factor for males and females, and a specific time factor for each country within each gender. As death counts in each subpopulation are modelled directly, a Poisson framework is used. Our results show that the 2-tier ACF model improves the in-sample fitting compared to the use of independent LC models for each subpopulation or of independent Li and Lee models for each couple of genders within each country. Mortality projections also show that the 2-tier ACF model produces coherent forecasts for the two genders within each country and different countries within each gender, thus avoiding the divergence issues arising when independent projections are used. The 2-tier ACF is further extended to include a cohort term to take into account the faster improvements of the UK ‘golden generation’

    Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis Adjusted Langevin Algorithm

    No full text
    International audienceIn this paper, we establish explicit convergence rates for Markov chains in Wasserstein distance. Compared to the more classical total variation bounds, the proposed rate of convergence leads to useful insights for the analysis of MCMC algorithms, and suggests ways to construct sampler with good mixing rate even if the dimension of the underlying sampling space is large. We illustrate these results by analyzing the Exponential Integrator version of the Metropolis Adjusted Langevin Algorithm. We illustrate our findings using a Bayesian linear inverse problem
    corecore